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Nontopological solitary waves in continuous and discrete one-component molecular chains

Paweł Machnikowski,* Piotr Magnuszewski, and Andrzej Radosz
Institute of Physics, Wrocław University of Technology, Wybrzez˙e Wyspian´skiego 27, 50–370 Wrocław, Poland

~Received 23 June 2000; published 18 December 2000!

It is shown that the nontopological~bell-shaped! solitary waves in the asymmetricw4 model are unstable and
correspond to saddle points of the potential energy of the continuous system. Their lifetime is estimated. In the
discrete model, the potential energy landscape becomes rough: bell-shaped configurations may become stable.
The potential energy function is analyzed around the bell-shaped configurations. A dynamical scenario for the
decay of the metastable state in a discrete system, related to spontaneous energy localization, is shown.
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I. INTRODUCTION

Recent years have seen a revival of interests in the p
erties of molecular chains and of the systems compris
one-dimensional chains as an integral element of their st
ture. The latter group includes both the systems whose p
erties have been intensively studied, such as hydro
bonded chains@1,2#, on one hand and systems whose inv
tigations have been much less extensive, such as po
acetylenes@3,4# and DNA @5,6#, on the other hand. Most o
the attention is paid to their dynamical properties: from p
ton transport in hydrogen-bonded chains, via photoindu
structural phase transitions in polydiacetylenes, to the
triguing dynamics of DNA. In the course of careful exam
nation of the dynamical properties of molecular chains
interesting issue has been brought to light: the character
feature that is common to all models is theirnonlinearity. In
hydrogen-bonded solid state systems, the proton is rega
as moving in a local bistable potential; in other systems s
a local potential may have a periodic character. Usually,
dynamics of such systems was considered in the contin
limit, which seemed to be a reasonable and treatable app
mation @7–11#. It was quite rich, accounting for both linea
phonon excitation and nonlinear, localized kink excitatio
or solitons. However, the dynamical properties of the r
systems turn out to be much richer. Another important f
ture, apart from nonlinearity, that had to be taken into
count isdiscreteness@8,12–16#. It is the interplay between
the discreteness and the nonlinearity that has led to sev
interesting aspects of the dynamical behavior, localization
energy@17# being one of the most important.

In this paper, we discuss the dynamical properties o
one-dimensional, one-component system with a bista
asymmetric potential. Such models have been used a
interpretation of various phenomena related to ferroelec
systems@2# and molecular chains appearing in living matt
@18#. Metastable configurational states of such systems m
be important for the conformational dynamics of the DN
macromolecule@19,20#. It has also been suggested@4# that
the structural photoinduced phase transition@3# could be in-
terpreted in terms of the model with an effective asymme
double well potential.

*Email address: machnik@if.pwr.wroc.pl
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In the continuum limit of the model under discussion, t
only possible stationary, localized excitations in the abse
of damping are nontopological, bell-shaped solitary wav
@21,22#; when damping is present, stationary topologic
~kink! solutions moving at a constant speed may ex
@21,23,24#. It was shown recently that the nontopologic
localized excitation is unstable@25#. It appears, however, tha
the discreteness would play a remarkable role here, wh
seems to be important due to possible experimental obse
tions @26#. The key element of a structural transformation
the interplay between two energy parameters: one relate
the local potential and the other one related to the strengt
the nearest-neighbor interaction, the degree of discreten
By removing the translational invariance of the continuo
system, the discreteness affects, through the Peierls-Nab
~PN! potential, the dynamics of localized-energy excitatio
In the case of a symmetric double well potential, it results
a shifting of the frequency of the Goldstone-like excitatio
vG

2 .0. Therefore, one might expect that in the case of
asymmetric potential, the discreteness might also shift
frequency of the fluctuations around a localized-energy e
tation, which might result in stabilizing the bell shape. Th
would lead to interesting consequences for photoindu
structural changes and for their possible future applicatio
These aspects of the discrete systems with a bistable a
metric potential have been the main motivation for the st
ies, the results of which are presented below.

In the following section, we study the stability propertie
of the nontopological excitation in the continuum limit. Th
dynamics of the collapse of the bell-shaped configuration
discussed. In Sec. III we describe the influence of the d
creteness on the possible stable configurations of the sys
We also examine in detail the structure of the potential
ergy around the discrete bell-shape-like configuration. Ne
we show that discreteness may lead to a new scenari
metastable state decay. Section IV contains a discussio
the results.

II. NONTOPOLOGICAL SOLITARY WAVE
AND ITS STABILITY

Let us consider the properties of the continuous nonlin
Klein-Gordon (w4) system defined by the Hamiltonian
©2000 The American Physical Society01-1
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H5E dxF1

2
u̇2~x,t !1

1

2
u82~x,t !1U@u~x,t !#G , ~1!

where

U~u!5
1

2
u22

B

3
u31

1

4
u4. ~2!

When B5B053/A2 the potential has two degenera
minima atu50 andu51/(A2). We will focus on the case
B.3/A2, in which the potential has two nondegenera
minima: a local one foru50 and the absolute one atu
5umin5(B1AB224)/2 @see Fig. 1~a!#.

The dynamical equation obtained from the Hamiltoni
~1! is

ü2u91u32Bu21u50, ~3!

where the dots and primes denote differentiation with resp
to t andx, respectively.

The only nontrivial stationary~‘‘traveling’’ ! solution to
the Lorentz-invariant equation~3! is the nontopological, bell-
shaped solitary wave@22#

ub~x,t !5
a

b1cosh@g~x2vt !#
, 21,v,1, ~4!

where a53/@B22B0
2#21/2, b5aB/3, g5@12v2#21/2. The

form of this solution is presented in Fig. 1~b!.
It is clear that the energy of the bell-shape solution

higher than the energy of both the metastable state,u[0,

FIG. 1. Asymmetric potential~in dimensionless units! ~a! and
corresponding bell-shape solution~b!. Plots correspond toB52.2
'B01731022 ~solid line!, B5B011024 ~dashed lines!, and B
5B011026 @dash-dotted lines; indistinguishable from the previo
one in ~a!#.
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and the globally stable state,u[umin . Since the bell shape is
a nontopological solution, it may be continuously deform
to any of these two states. Therefore, it should not be
pected to be stable@27,28#. To verify this, let us follow the
standard linear stability analysis@9,27#. Writing in the bell
shape’s resting frame,z5g(x2vt), s5g(x1vt),

u~z,s!5ub~z!1f~z!eils, ~5!

the equation of motion~3! linearized inf takes the form of
a Schro¨dinger-like eigenvalue problem

2]z
2f~z!1V~z!f~z!5l2f~z!, ~6!

where

V~z!5Fd2U~u!

du2 G
u5ub(z)

53ub
2~z!22Bub~z!11. ~7!

The characteristic feature of the spectrum of the opera

2]z
21V~z! ~8!

corresponding to localized energy excitations in continuo
systems is the presence of the zero-frequency mode,l50.
The appearance of such a mode accompanies the broken
tinuous symmetry—the translational invariance. Howev
this broken symmetry is not an internal one and instead o
Goldstone, gapless mode, one gets a separated, z
frequency excitation, hereafter called a pseudo-Goldst
mode. In the system with a symmetric potential,B5B0, the
localized energy excitation is the kink~or antikink! solution,

uk,ak~z!5
1

A2
S 16tanh

z

2D , ~9!

andV(z) in Eq. ~6! takes the form of the Po¨schl-Teller~PT!
potential@7,29#

V~z! →
B→B0

VK~z!512
3

2
cosh22

z

2
. ~10!

The discrete spectrum of this potential consists of the gro
level l0

250, whose eigenfunction is the translation
symmetry-restoring mode]zuk,ak, and an excited levell1

2

53/4 @30,31#.
In the case of an asymmetric potential,V(z) is defined by

Eq. ~7! and the functionfG(z)5]zub(z) corresponds to the
pseudo-Goldstone excitation but it has one node. Theref
it is related to the~first! excited level,l1

250, and there must
be a ground state solution of Eq.~6!, a nodeless one, belong
ing to a lower eigenvalue,l0

2,0. Such a solution, having
imaginary frequency@cf. Eq. ~5!#, explodes exponentially
destroying the original solution. The magnitudeul0u21 may
be interpreted as the lifetime of the bell-shaped solit
wave.

In a weakly asymmetric system,B→B0, the bell-shaped
solution has a wide kink-antikink-like form. The potenti
V(z) is composed of two Po¨schl-Teller wells~10! separated
1-2
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NONTOPOLOGICAL SOLITARY WAVES IN CONTINUOUS . . . PHYSICAL REVIEW E 63 016601
by a wide barrier~Fig. 2!. In effect, the two discrete eigen
values of the potentialVK(z) become split. Due to the trans
lational symmetry of the system, the ground level is split
such a way that the eigenvaluel1

250 is retained, but now
related to the excited level. The negative eigenvaluel0

2 may
be found in this limit by semiclassical methods. The quan
tative calculation~see the Appendix! leads to the following
formula for the bell shape’s lifetime:

ul0u21'2A 3p

714A3

1

AB22B0
2

e0.9.

The other localized state of the Po¨schl-Teller potential
produces in the same way a pair of positive eigenvalues
lated to two real-frequency modes around the bell sha
~Note the analogy between the above analysis and that o
double-Morse potential treated as two Morse wells separ
by a certain, variable distance@32#.!

In the opposite limit, whenB→`, the potentialV(z) has
again the Po¨schl-Teller form, but with different parameters

V~z! →
B→`

V`~z!5123 cosh22
z

2
,

and l052A5/2, henceul0u21→2/A5 @30,31#. In this limit
there is one positive frequency mode,l2

253/4.
Figure 3 showsul0u21 obtained by numerical methods fo

various values ofB. As may be seen, it decays very fast

FIG. 2. Potential for stability analysis for almost degener
minima of the on-site potential,B5B011026.

FIG. 3. Lifetime of the bell-shaped solitary wave for vario
values of asymmetry between minima of the on-site potential~de-
termined by the parameterB). Dashed line shows the asymptot
value of 2/A5.
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the asymptotic value of 2/A5. This lifetime should be com-
pared to the characteristic time scales of the system.
instance, the period of phononic oscillations ranges fr
2p/A5 to 2p. Also, the velocities of the nonlinear excita
tions are lower than 1. Hence, the bell shape can travel
ing its lifetime only the distance of less then one node. Th
the lifetime of this nonlinear excitation is very short, exce
for nearly symmetric potentials, where the bell shape ac
ally consists of a pair of nearly independent kinks fairly d
tant from each other~cf. Fig. 1!.

The above results indicate that the resting bell-sha
configuration is a saddle point in the potential energy la
scape of the system. The potential energy function aro
this configuration has negative curvature in exactly one
rection ~corresponding to the negative eigenvalue! and zero
curvature in another direction, related to the translatio
mode.

It is obvious that an excitation appearing in a real syst
is unlikely to be exactly of the form~4!. The unavoidable
discrepancy~however small it is! will lead to the collapse of
the configuration. Further system dynamics depends on
direction of the collapse towards the local or global min
mum. In the former case the bell shape turns into a locali
oscillatory excitation living on the false vacuum state. Su
excitations might be absolutely stable only in a discrete s
tem @33,34#. However, even in a continuous one their lif
times prove to be very long. This fact may be qualitative
understood by noticing that the frequency of oscillations
very low for such large-amplitude motion~the dynamics
originates at the saddle point and is still close to the sep

FIG. 4. System dynamics (B52.2) after collapse of a bell shap
to the false vacuum state;~a! system configuration,~b! energy den-
sity.

e

1-3
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MACHNIKOWSKI, MAGNUSZEWSKI, AND RADOSZ PHYSICAL REVIEW E63 016601
trix!. Thus, only the relatively weakly excited second h
monic enters into the phonon spectrum and, moreover,
located far above its lower edge, i.e., in a region of lo
density of phonon states. For these reasons, radiatio
rather weak and the system remains for a relatively long t
in the oscillating state~Fig. 4!. This kind of dynamics is
similar to the bubble collapse leading to long-livin
spherically-symmetric ‘‘oscillon’’ states in three
dimensional theories@35–37#. A large bubble may easily be
excited, either by external interaction or by internal dyna
ics, and the system may pass through the saddle toward
global minimum~see Sec. III C!.

When the initial system state is a moving bell shape,
bubble resulting from its collapse moves with the same
locity ~Fig. 5! which, in fact, results from the Lorentz invar
ance of the problem. After the collapse towards the glo
minimum, the bell-shape state splits into two kinks traveli
towards system ends~Fig. 6! @38#. In the presence of damp
ing, a kink in an asymmetric potential moves with a certa
constant speed@23#. Since there is no explicit damping in th
system, kinks may be expected to accelerate to the spee
sound (v51). However, some energy loss takes place du
radiation~also because of discretization unavoidable in sim
lation!, leading to stationary movement with a speed ve
close tov51. It is interesting to note that both kinks mov
with the same speed, irrespective of the original bell-sh
velocity ~Fig. 7!. This does not violate conservation law
since fast kinks have high energy and even very slight
unnoticeable velocity differences lead to sufficient asymm
try in momentum. Moreover, some momentum may be tra
ferred to radiation.

FIG. 5. System dynamics (B52.2) after collapse of a bell shap
to the false vacuum state with an initially moving bell shape.~a!
System configuration,~b! energy density.
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III. DISCRETENESS EFFECTS

In this section, we will consider the dynamical properti
of the discrete version of the system~1!. In this case, the
Hamiltonian takes the form

H5(
n

F1

2
u̇n

2~ t !1
1

2
k@un11~ t !2un~ t !#21U@un~ t !#G ~11!

and the equation of motion~3! is now replaced by the system
of equations

ün2k~un1122un1un21!1un2Bun
21un

350. ~12!

Discreteness eliminates the translational invariance of
system, leading to serious modification of both stability co
ditions and system dynamics. There are three essentia
fects related to discreteness:~i! the appearance of loca
minima of the potential energy corresponding to bell-sha
like states for high enough discreteness;~ii ! the complex
structure of saddle points of the potential energy replac
the translationally invariant bell-shape solution;~iii ! modifi-
cation of the system dynamics due to the existence of
crete breathers@34# and discreteness effects on the kink d
namics, well known from symmetric systems@8#.

A. Local minima

In the limit of independent oscillators (k→0) any con-
figuration with some nodes in the right well and the rest
the left well is stable. In particular, any bell-shape-like co

FIG. 6. System dynamics (B52.2) after collapse of a resting
bell-shape to the true vacuum state.~a! System configuration,~b!
energy density.
1-4
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NONTOPOLOGICAL SOLITARY WAVES IN CONTINUOUS . . . PHYSICAL REVIEW E 63 016601
figuration, i.e., one with a certain number of consecut
nodes placed exactly in the global minimum, is stable. O
may expect that for low values ofk all these configurations
survive in a slightly changed form. They will gradually b
come unstable when the value ofk is increased. Figure 8
shows one of the stable solutions of Eq.~12!. Note that the
central node lies closer to the global minimum than the c
responding part of the continuous system. For each valu
B one finds the critical value ofk below which such a one
node configuration is stable. Continuing this type of pro
dure, one can identify the area of stability of the two-no
configuration, three-node configuration, etc. The final res
is presented in Fig. 9: below thenth consecutive line in the
B-k frame, the correspondingn-node configuration is stable
Note that for anyn there is an area of parameters where o
the n-node configuration is stable.

FIG. 7. System dynamics (B52.2) after collapse of a bell shap
moving with initial velocity v50.9 to the true vacuum state.~a!
System configuration,~b! energy density.

FIG. 8. Stable system configuration corresponding to a
shape.
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The existence and disappearance of the stable config
tions is related to the restructuring of the phonon mod
around them. As we have seen, in the continuum limit th
is one growing, imaginary-frequency mode, one ze
frequency Goldstone mode, and a certain number of perio
~real-frequency! localized modes. The behavior of suc
modes was examined for kinklike equilibria in symmetr
potentials where only the Goldstone mode and perio
modes exist. It is known that the former moves up and tra
forms in a periodic Peierls-Nabarro mode related to osci
tions of the pinned kink around its equilibrium position
the PN potential@39#. The higher modes are related to shap
changing oscillation of the kink. Stabilization of a bel
shaped excitation in a discrete system means that not
the Goldstone mode has become a nonzero real-frequ
mode, but so has the exploding mode. Due to their topolo
the former now corresponds to the PN mode~oscillation of
the bell-shaped excitation as a whole! and the latter is a kind
of a shape mode. The structure of localized modes as a f
tion of discreteness and asymmetry is shown in the Fig.

It must be noted that the stability of a discrete bell-sha
like configuration has only local character, i.e., it may
destroyed by large enough perturbations. Moreover, disc
configurations obviously correspond only to resting be
shaped excitations.

B. Saddle points

For many applications it is essential to know the quan
tative properties of the potential energy landscape around
saddle point separating the globally stable state from
metastable state. This problem, trivial in the continuum c
~a continuous family of saddle-point configurations relat
by translation! becomes much more complicated when d
creteness is taken into account.

First, one needs a procedure for searching for the sa
points of the potential energy. It is essential to note that
are interested in finding the closest characteristic po
(¹Epot50) rather than the global minimum~which is trivial!
or maximum~which does not exist!. A suitable method con-
sists in approximating the potential energy function at
starting point by its second order series expansion and g
to the saddle point of the obtained function which then b
comes the starting point for the next iteration.

ll

FIG. 9. Stable configurations of a discrete system~see explana-
tion in text!. Inset shows the diagram for a wider range ofB.
1-5
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MACHNIKOWSKI, MAGNUSZEWSKI, AND RADOSZ PHYSICAL REVIEW E63 016601
As a first example, let us take the value ofB52.265,
corresponding to the rightmost peak in Fig. 9. The schem
plot of the potential energy function is shown in Figs. 11~a!–
11~c!. There are no stable bell-shaped configurations
strongly coupled chain,k.0.18 and only saddle configura
tions are possible. Fork.0.603 there is a series of sadd
points corresponding to bell-shaped configurations cente
on the nodes of the chain. At these saddle points the pote
energy function has exactly one negative curvature and
will be referred to asproper saddles. Somewhere betwee
any two adjacent proper saddles there is always a chara
istic point with two negative curvatures~a double-saddle
point!. It has a higher energy than the proper saddle. O
may think of it ~not strictly! as a transition from one prope
saddle configuration to the neighboring one~which means
shifting the bell shape by one node! along a ridge; between
two saddles there must be a hill. This description obviou
refers only to the two selected directions corresponding
the collective coordinates of the system. One of them is
size of the bell shape and is related to the exploding m
and the other one is the position along the system an
related to the formerly translational mode. All the other ‘‘d
rections’’ correspond to positive curvatures.

As k decreases, the roles of the proper saddles
‘‘pseudohills’’ ~double-saddle configurations! are inter-
changed atk50.603 and then again atk50.213—the proper
saddles may correspond to configurations centered on o
tween the nodes. The first two plots in Fig. 11 correspond
these two different situations.

The relative difference between energies of these sa
point configurations, normalized to the lower one, are plot
in the Fig. 12~a!. Note that the energy difference may b

FIG. 10. Linear modes~localized and extended! around the one-
node configuration;~a! as a function ofB for k50.1, ~b! as a
function of k for B52.2.
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considerable compared to the total energy of the saddle-p
configuration. For high values ofk the second lowest curva
ture gradually diminishes for both types of saddle points a
so does the energy difference between them. In this way,
translational symmetry of the continuum limit appears.

Below the valuek'0.18 the one-node configuration be
comes a local minimum and there is a double-saddle p
corresponding to the two-node configuration separating
equivalent minima related by shifting the configuration
one lattice spacing@Fig. 11~c!#.

It is evident from Fig. 9 that belowk'0.13 many local
minima appear; however, all of them are located far from
‘‘ridge’’ and their energies are very low. The potential e
ergy landscape for such a discrete system becomes
complex and cannot be described in terms of the tw
dimensional space of collective coordinates. Actually, as
discreteness grows, the system undergoes a transition
the collective decay scenario to the individual one.

For a weakly coupled chain a reduced system approxi
tion is useful@34,40#, in which only two nodes are allowed t
move, while the others are fixed at the local minimum. T
potential energy of such a system for various values ofk is
plotted in the Fig. 13. The figures show also the lowest

FIG. 11. Schematic plot of the potential energy around the b
shaped configurations in the discrete system forB52.265. The
plots refer to two directions, one related to the exploding mode
the other one related to the formerly translational mode.
1-6
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NONTOPOLOGICAL SOLITARY WAVES IN CONTINUOUS . . . PHYSICAL REVIEW E 63 016601
ergy paths joining the two deepest minima. For uncoup
nodes,k50, @Fig. 13~a!# it is clear that the path correspond
to first shifting one of the particles over the hump and th
doing the same with the other one. As the value ofk in-
creases@Figs. 13~b!–13~c!#, the nodes move in a more co
lective way: shifting one node requires some displacemen
the other one. Nonetheless, the second node still under
only a slight displacement until the first node is placed in
deeper minimum. In the context of the full chain this corr
sponds to the fact that in a strongly discrete chain
‘‘cheapest’’ way is to move the nodes over the hump one
one.

The second example corresponds toB52.158. For this
value of B various kinds of configurations stabilize almo
simultaneously~see Fig. 9! leading to the appearance o
many local minima atk'0.218.

Let us start the discussion close to the continuum limit,
previously. Fork.0.56 there is a proper saddle point ce
tered in between the nodes and a double-saddle point
tered on a node. The relative difference between the pote
energy at these points is very low: e.g., fork50.7 its value is
3.231024 of the potential energy barrier height@Fig. 14~a!#.
The solution is very similar to the continuum one and t
number of nodes involved in the configuration grows withk.

FIG. 12. Comparison of energies of different saddle-point c
figurations,~a! B52.265. The main plot shows the relative ener
difference, DE5(E1/22E1)/min(E1/2,E1), between the saddle
point configurations centered on a node and between nodes.
inset shows the same for a wider range ofk. ~b! B52.158. Main
plot, solid line shows the relative energy difference,DE5(E1/2

2E1)/min(E1/2,E1), between the saddle point configurations ce
tered on a node and between nodes. Main plot, dashed line s
the relative energy difference,DE5(E12E1/3)/E1/3, between the
saddle point atn51/3 and the on-node saddle-point configuratio
Inset shows the total, absolute energy of the saddle~with respect to
the metastable minimum!.
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For 0.32,k,0.56 the roles of the characteristic poin
switch @Fig. 14~b!#. The on-node configuration~three nodes!
now corresponds to the proper saddle. Fork'0.322 the
proper saddle bifurcates into a double saddle located o
node and a proper saddle separating it from the dou
saddle located in between the nodes@Fig. 14~c!#. The proper
saddles are shifted by approximately 1/3 of the lattice sp
ing from the on-node configuration which means that th
correspond to asymmetric configurations. Figure 12~b! com-
pares energies of different saddle points.

The almost simultaneous appearance of many lo
minima atk'0.218 causes the potential energy to beco
very flat at many points. Below this critical value there a
local minima corresponding to many different kinds of co
figurations centered both on a node and between nodes~out
of them, the two- and three-node configurations have

-

he

-
ws

.

FIG. 13. Potential energy of a reduced, two-node system foB
52.265 and~a! k50, ~b! k50.1,~c! k50.15. The thick line shows
the lowest energy paths joining the two local minima.
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highest energies, i.e., are the closest to the barrier!. It is
impossible to present the potential energy of the system
collective coordinates diagram.

The above examples reveal that the potential structur
a discrete chain in a double-well potential strongly depe
on the system parameters. For small discreteness~higher val-
ues ofk) the most important effect is the overall lowering
the saddle compared to the continuum approximation@see
the inset in Fig. 12~b!#. But when the nearest-neighbor co
pling weakens, the physical properties of the system will
affected by the growing roughness of the potential ene
landscape. Below a certain value ofk there is no point in
speaking about bell-shaped~collective! configurations. In-
stead, the system should be described in terms of the i
vidual dynamics of the nodes.

C. Dynamical effects characteristic of discrete systems

Discreteness is also important for the system dynam
after the collapse of the bell-shaped configuration. In view
the large lifetimes of oscillatory states, for the collapse
wards the local minimum the difference may be seen only
very large time scales and consists in stopping the deca
the bubble at a certain stage and converting it into sta
discrete breathers.

FIG. 14. Schematic plot of the potential energy around the b
shaped configurations in the discrete system forB52.158. The
plots refer to two directions, one related to the exploding mode
the other one related to the formerly translational mode.
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On the other hand, when the bell-shaped excitation c
lapses into an expanding sector~bubble! of globally stable
state, discreteness modifies considerably the kink dynam
Due to radiation @8,39#, the kink motion is effectively
damped and its speed stabilizes at some valuev,Ak. An
example is shown in Fig. 15, where the kinks originati
from a collapse of a bell-shaped configuration move with
constant velocity ofv'0.75Ak. Hence, the effect of dis-
creteness on bubble expansion is similar to that of ther
noise@38#.

Since the bell-shaped configuration is a saddle point
the potential energy, the decay of the metastable state m
be initiated by the formation of a ‘‘bubble’’ larger than th
bell-shaped configuration. From the usual thermodynam
point of view, this might occur only in the presence of the
mal fluctuations. The theory behind such decay is now w
understood@41–43#. However, when the mean energy~tem-
perature! is low, a large enough fluctuation is extremely im
probable.

In a discrete system, even an isolated one, processe
spontaneous energy localization take place@17#. Such pro-
cesses lead to formation of discrete breathers that are
long-lived and have relatively large~although limited! am-
plitudes and energies. Small~‘‘light’’ ! breathers may move
along the system, while large~‘‘heavy’’ ! ones can only be
resting@44#.

During collisions, larger breathers tend to grow at t
expense of smaller ones@17#, until they reach the maximum
possible size. This size is determined by the requirement
the second harmonic of the breather frequency lie above

l-

d

FIG. 15. Collapse of the bell-shaped configuration in a discr
system. Due to radiation effects, the kinks speed is lower thanAk.
1-8
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phonon spectrum@45,34#. If there were breathers close to th
critical size ~i.e., such that further increasing the amplitu
would overthrow the system towards the global minimum!,
their frequency would be close to 0, contradicting the abo
requirement. Hence, the largest breather must have lo
energy than necessary to pass through the saddle.

However, collisions between breathers may lead to
following scenario: a small moving breather collides with
large ~resting! one; the total energy is large enough and
system crosses the saddle point~or, strictly speaking, it
crosses the potential energy ridge at a certain point, not
essarily at the saddle! and an expanding critical bubble orig
nates. An example of such a dynamical decay proces
shown in Fig. 16.

A criterion for a possibility of a dynamical~as opposed to
thermodynamical! decay scenario is roughly as follows: th
total energy of the largest possible resting breather toge
with the largest possible moving one should exceed
saddle point height~over the false vacuum configuration!
which is equal to the bell-shape energy.

At low temperatures this dynamical process may stron
contribute to the probability of the decay of the metasta
state. However, the statistical properties of breather for
tion seem to be understood insufficiently to allow any qu
titative conclusions. It is important to note that we negle
any quantum effects that would lead to a completely diff
ent decay mechanism~tunneling instead of thermally acti
vated! for low temperatures@42#.

FIG. 16. An example of dynamical decay of the metastable s
due to two-breather collision.
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IV. CONCLUSIONS

We have studied the properties of nontopological, be
shaped excitations in both continuum and discrete syst
with asymmetric on-site potentials. We have shown that s
excitations in the continuum model are unstable. The lifeti
of the bell-shaped waves has been estimated in the two
iting cases: strong asymmetry and weak asymmetry.
short lifetime of these excitations prevents them from hav
any importance for the transport phenomena.

The collapse of a bell-shaped wave may lead either t
slowly vanishing oscillating bubble excitation around the
cal minimum of the system or to an expanding sector of
system lying in the global minimum. This sector is bound
by two kinks moving~in the continuum case! with the speed
of sound. The analogy with three-dimensional systems
cussed elsewhere@36–38# seems interesting here.

The bell-shaped configuration of the continuous system
a saddle point of the potential energy. Actually, due to
continuous translational symmetry there is a family
equivalent saddle points. Through these saddle points
decay of the metastable state of the system is most likel
happen.

In the discrete system the potential energy around
configurations analogous to the continuum bell shapes
comes rough. For systems close to the continuum limit t
roughness consists simply in replacing the original co
tinuum of equivalent saddle points with isolated sad
points separated by ‘‘hills’’~saddle points with two negative
curvatures!. This might seem analogous to the Peier
Nabarro potential for kinks but unlike the latter, the potent
energy for bell-shaped waves cannot be rigorously defi
and has not much importance, since such waves are
stable. For strongly discrete systems, the shape of the po
tial energy becomes essentially different: many saddle po
and local minima may appear. These characteristic po
may be numerically searched out and classified but a c
picture may be obtained only for the most discrete syste
where the approximation by a reduced system with two
grees of freedom is applicable. One may conclude that w
growing discreteness the system undergoes a crossover
the collective decay path~metastable state decay is likely t
involve the formation of a bell-shaped saddle-point config
ration! to the single-node path~the nodes move to the globa
minimum one by one!—domino effect@4#.

Discreteness leads also to new effects during the colla
of a bell-shaped configuration: the decay of the oscillat
bubble may be stopped by forming a discrete breather
the kinks bounding the expanding sector move with low
velocity.

An interesting generalization of the results presented
this paper would be to include the two-component syste
It was shown@46# that in a two-component model, where th
system~1! is coupled in a special way to another, harmon
Klein-Gordon field, the equations of motion may be reduc
to a one-component problem and solved~see also@47#!.
However, it may be shown~see@25#! that such an excitation
is unstable, at least for low velocities. This property sho
be contrasted with the stability of excitations~kink with ac-
companying bell shape! in symmetric models@1#.

te
1-9
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Another interesting idea was proposed by Volkov@20#
who constructed a model in which the asymmetric on-s
potential is generated dynamically. Such a system supp
only moving bell-shaped waves. Their stability cannot
rigorously examined due to the lack of Lorentz invarian
~cf. @25#!. They might be expected to be unstable: except
the collapse, similar to that described in this paper, Volko
solitary wave may be slowed by discreteness, impurities,
interaction with the environment and its speed may so
drop below the minimum value necessary for its existen
However, certain similar two-component excitations d
cussed in@48# proved to be stable or at least very long-livin
This problem is an interesting subject worthy of furth
study, both analytical and numerical.

The results presented in this paper will be useful for
correct description of the metastable state decay in a disc
system. The problem is also of interest within the field
solid state physics@49#, where discreteness certainly plays
significant role.
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APPENDIX

Let us reiterate that the analysis of small oscillatio
around the kink solution in a symmetric potential@29# leads
to the Schro¨dinger-type equation~6! with the Pöschl-Teller
potential~10!. For an on-site potential close to the symmet
one, i.e.,B22B0

2!1, the potentialV(z) in Eq. ~6! is close to
two separated Po¨schl-Teller wells, each of the form~10!, as
shown in Fig. 2. There is a solution to Eq.~6! with l250
and one solution with a lower eigenvalue that we are go
to find. The lowest eigenlevels may be treated as a Wen
Kramers-Brillouin ~WKB! pair. Without much inaccuracy
one can take the Po¨schl-Teller levell250 as the original
one, instead of the zero-order WKB~Bohr-Sommerfeld! re-
sult for one well. The formula for the split between the leve
then reads

D~l2!5
1

2 F E
z i

zo dz

Al22V~z!
G21

expF E
2z i

z i AV~z!2l2dzG
h
s

ev

v
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~limits of integration are shown in Fig. 2!.
Although the integrals appearing in this formula may

calculated explicitly in terms of elliptic functions, it is muc
simpler, and accurate enough, to calculate the first integra
in a single PT well. Puttingl250, one has

E
z i

zo dz

Al22V~z!
'E

2z8

z8 dz

A3

2
cosh22

z

2
21

52p,

wherez8 is a turning point for a symmetric PT potential.
As for the integral in the exponent, note that for a lar

enough separation of wells, increasinga by Da results in
increasing the integral by 2Da. Hence,

E
2z i

zo AV~z!dz5S012a.

Here S0 is a constant and may be found numerically to
S051.860.1. The value ofz i may be found from the condi
tion 3u2(z i)22Bu(z i)1150. The inner turning point cor-
responds to the solutionu(z i)5u15@B1AB223#/3. Thus,
coshzi5a/u12b. Assuming thatB25B0

21«2, we havea
'3/«, b'B0 /«1«/(2B0), and

u15
1

3 FB01AB0
2231

1

2B0
«21

1

2AB0
223

«2G .

InsertingB0
259/2 and keeping the leading terms we g

ez i'2 coshzi'(6A223A6)«21. This leads to the split be
tween the levels and, since the upper one isl250, to the
lowest eigenvalue,

l0
252

1

4p
e2S0

714A3

3
«2.

Using the value ofS0 estimated above, one gets for th
bell shape’s lifetime

ul0u21'2A 3p

714A3

1

AB22B0
2

e0.9.
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