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Nontopological solitary waves in continuous and discrete one-component molecular chains

Pawet Machnikowskf, Piotr Magnuszewski, and Andrzej Radosz
Institute of Physics, Wroctaw University of Technology, Wylera&fgspiaskiego 27, 56370 Wroctaw, Poland
(Received 23 June 2000; published 18 December 2000

It is shown that the nontopologicéell-shapeiisolitary waves in the asymmetrie* model are unstable and
correspond to saddle points of the potential energy of the continuous system. Their lifetime is estimated. In the
discrete model, the potential energy landscape becomes rough: bell-shaped configurations may become stable.
The potential energy function is analyzed around the bell-shaped configurations. A dynamical scenario for the
decay of the metastable state in a discrete system, related to spontaneous energy localization, is shown.
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[. INTRODUCTION In the continuum limit of the model under discussion, the
only possible stationary, localized excitations in the absence
Recent years have seen a revival of interests in the propf damping are nontopological, bell-shaped solitary waves
erties of molecular chains and of the systems comprising21,22; when damping is present, stationary topological
one-dimensional chains as an integral element of their strugkink) solutions moving at a constant speed may exist
ture. The latter group includes both the systems whose prog21,23,24. It was shown recently that the nontopological
erties have been intensively studied, such as hydrogelcalized excitation is unstabJ@5]. It appears, however, that
bonded chaingl,2], on one hand and systems whose inves+the discreteness would play a remarkable role here, which
tigations have been much less extensive, such as polydseems to be important due to possible experimental observa-
acetylene¢3,4] and DNA[5,6], on the other hand. Most of tjons[26]. The key element of a structural transformation is
the attention is paid to their dynamical properties: from pro-ne interplay between two energy parameters: one related to
ton transport in hydrogen-bonded chains, via photoinduceghe |ocal potential and the other one related to the strength of
structural phase transitions in polydiacetylenes, to the iy pearest-neighbor interaction, the degree of discreteness.
trlg_umg dynamics of .DNA' In th‘? course of careful exami- By removing the translational invariance of the continuous
hation (.)f the dynamical properties of_mo!ecular chains Aystem, the discreteness affects, through the Peierls-Nabarro
interesting issue has been brought to light: the characteristi N) potential, the dynamics of localized-energy excitations.

feature that is common to all models is theanlinearity. In the case of a symmetric double well potential. it results in
hydrogen-bonded solid state systems, the proton is regardé@ o Y P S -
) shifting of the frequency of the Goldstone-like excitation,
2

as moving in a local bistable potential; in other systems suc 4 X
a local potential may have a periodic character. Usually, th&’c= 0. Therefore, one might expect that in the case of an
dynamics of such systems was considered in the continuuf@Symmetric potential, the discreteness might also shift the
limit, which seemed to be a reasonable and treatable approxitequency of the fluctuations around a localized-energy exci-
mation[7—11]. It was quite rich, accounting for both linear tation, which might result in stabilizing the bell shape. This
phonon excitation and nonlinear, localized kink excitationswould lead to interesting consequences for photoinduced
or solitons. However, the dynamical properties of the reastructural changes and for their possible future applications.
systems turn out to be much richer. Another important feaThese aspects of the discrete systems with a bistable asym-
ture, apart from nonlinearity, that had to be taken into ac-metric potential have been the main motivation for the stud-
count isdiscretenes$8,12—-16. It is the interplay between ies, the results of which are presented below.
the discreteness and the nonlinearity that has led to several In the following section, we study the stability properties
interesting aspects of the dynamical behavior, localization obf the nontopological excitation in the continuum limit. The
energy[17] being one of the most important. dynamics of the collapse of the bell-shaped configuration is
In this paper, we discuss the dynamical properties of gjiscussed. In Sec. Ill we describe the influence of the dis-
one-dimensional, one-component system with a bistableyreteness on the possible stable configurations of the system.
asymmetric potential. Such models have been used as &fe also examine in detail the structure of the potential en-
interpretation of various phenomena related to ferroelectri(‘ergy around the discrete bell-shape-like configuration. Next,
systemd 2] and molecular chains appearing in living matter we show that discreteness may lead to a new scenario of

[18]. Metastable configurational states of such systems mayetastable state decay. Section IV contains a discussion of
be important for the conformational dynamics of the DNA the results.

macromoleculd19,2q. It has also been suggestpd] that
the structural photoinduced phase transifi@hcould be in-
terpreted in terms of the model with an effective asymmetric Il NONTOPOLOGICAL SOLITARY WAVE

double well potential. AND ITS STABILITY

Let us consider the properties of the continuous nonlinear
*Email address: machnik@if.pwr.wroc.pl Klein-Gordon (*) system defined by the Hamiltonian
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a) 03 : and the globally stable state=u,,,. Since the bell shape is
. / a nontopological solution, it may be continuously deformed
0.2 to any of these two states. Therefore, it should not be ex-
pected to be stablg27,28. To verify this, let us follow the
0.1 standard linear stability analysi9,27]. Writing in the bell
= /—\ shape’s resting frame,= y(x—uvt), s=y(x+uvt),
0.0 i
u(£,8)=up($) + (e, (5
-0.1 —— . — : . . . .
05 00  o0s 170 1f5 20 the eq_yatmn of mot_loms) linearized in¢ takes the form of
u a Schralinger-like eigenvalue problem
®) 1.4 — 2P V(D PO =N2p(0), 6)
1.2
1.0 where
2987 d2U(u) ,
* 0.6 V()= " =3U§({)—2Buy(¢)+1. !
0.4-_ u u=uy(?)
0.2
0.0 The characteristic feature of the spectrum of the operator

0050 s 0 — 92+ V({) ()

FIG. 1. Asymmetric potentialin dimensionless uniis() and  corresponding to localized energy excitations in continuous
Correspondlrlgz be||-shape SOIUUQh) PIE)}S COI’I’eSpo_nd =22 Systems is the presence of the Zero_frequency de;d)
~Bo+7x10 “ (solid ling), B=B,+10 " (dashed lines andB  The gppearance of such a mode accompanies the broken con-
:Bo.+10 [dash-dotted lines; indistinguishable from the previoustinuous symmetry—the translational invariance. However,
one in(a]. this broken symmetry is not an internal one and instead of a

1 1 Goldstone, gapless mode, one gets a separated, zero-
' frequency excitation, hereafter called a pseudo-Goldstone
H= | dx zu(x,t)+ zu’?(x,t) + Ulu(x,t)]|, (1 o :
f 2 1) 2 1) [u(x.0] @ mode. In the system with a symmetric potentBis By, the
localized energy excitation is the kirfkr antikink) solution,

where

, C)

1 {

1 B 1 _1 {
U(u)=§u2— 3u3+ Zu4' 2) Uk ak £) \/E(litanhz
andV(¢) in Eq. (6) takes the form of the Rehl-Teller(PT)

When B=B,=3/\/2 the potential has two degenerate potential[7.29]

minima atu=0 andu=1/(,/2). We will focus on the case
B>3/y/2, in which the potential has two nondegenerate B—Bg 3 ¢
minima: a local one fou=0 and the absolute one at V() — Vi({)=1— = cosh 2=, (10
— Upin= (B+ VBZ—4)/2 [see Fig. 1a)]. 2 2

The dynamical equation obtained from the Hamiltoniantye giscrete spectrum of this potential consists of the ground

(1) is level )\3=O, whose eigenfunction is the translational
SN N S symmetry-restoring modé,uy ., and an excited Ieve)kf
u—u"+u°-Bu +u=0, 3 —3/4[30,31],

where the dots and primes denote differentiation with respect [N the case of an asymmetric potenti(<) is defined by

to t andx, respectively. Eq. (7) and the functionpg({) = d,up({) corresponds to the

the Lorentz-invariant equatici8) is the nontopological, bell- it is related to thefirst) excited levelA =0, and there must

shaped solitary wavg22] be a ground state solution of E@), a nodeless one, belong-
ing to a lower eigenvalue\3<0. Such a solution, having
)= a C<p<l 4 imaginary frequencycf. Eq. (5)], explodes exponentially,

U8 = b+cosh y(x—vt)]’ v<l, 4 destroying the original solution. The magnitude| * may

be interpreted as the lifetime of the bell-shaped solitary
where a=3/[B?-B3] Y2, b=aB/3, y=[1-v?] Y2 The wave.
form of this solution is presented in Fig(k. In a weakly asymmetric systerB— B, the bell-shaped
It is clear that the energy of the bell-shape solution issolution has a wide kink-antikink-like form. The potential
higher than the energy of both the metastable stateQ, V(¢) is composed of two Pzhl-Teller wells(10) separated
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1.0 the asymptotic value of 255. This lifetime should be com-
pared to the characteristic time scales of the system. For
instance, the period of phononic oscillations ranges from
2m/\/5 to 2m. Also, the velocities of the nonlinear excita-
tions are lower than 1. Hence, the bell shape can travel dur-
0.0 ing its lifetime only the distance of less then one node. Thus,
o the lifetime of this nonlinear excitation is very short, except
i\ for nearly symmetric potentials, where the bell shape actu-
e ally consists of a pair of nearly independent kinks fairly dis-
12 -6, -4 g G G 12 tant from each othefcf. Fig. 1).
The above results indicate that the resting bell-shaped
FIG. 2. Potential for stability analysis for almost degenerateconfiguration is a saddle point in the potential energy land-
minima of the on-site potentiaB=By+ 10 . scape of the system. The potential energy function around
this configuration has negative curvature in exactly one di-
by a wide barrier(Fig. 2. In effect, the two discrete eigen- rection(corresponding to the negative eigenvalaed zero
values of the potentia¥/({) become split. Due to the trans- curvature in another direction, related to the translational
lational symmetry of the system, the ground level is split inmode.
such a way that the eigenvaluéfo is retained, but now It is obvious that an excitation appearing in a real system
related to the excited level. The negative eigenvalgenay IS unlikely to be exactly of the fornt4). The unavoidable

be found in this limit by semiclassical methods. The quanti-discrepancyhowever small it iswill lead to the collapse of
tative calculation(see the Appendixleads to the following the configuration. Further system dynamics depends on the

0.5

V(©)

formula for the bell shape’s lifetime: direction of the collapse towards the local or global mini-
mum. In the former case the bell shape turns into a localized
37 1 oscillatory excitation living on the false vacuum state. Such
|)\o|_1“2 el excitations might be absolutely stable only in a discrete sys-
7+443B2-B} tem [33,34]. However, even in a continuous one their life-

) . _ times prove to be very long. This fact may be qualitatively
The other localized state of the suhl-Teller potential understood by noticing that the frequency of oscillations is
produces in the same way a pair of positive eigenvalues rezery low for such large-amplitude motiotthe dynamics

lated to two real-frequency modes around the bell shapeyriginates at the saddle point and is still close to the separa-
(Note the analogy between the above analysis and that of the

double-Morse potential treated as two Morse wells separated
by a certain, variable distan¢82].)

In the opposite limit, whelB— o, the potentiaM({) has
again the Pschl-Teller form, but with different parameters,

a)

B—ow

V({) — V({)=1-3 cosh‘zg,

and A\ o= —\/5/2, hence\o| ~*—2/\/5 [30,31. In this limit
there is one positive frequency modeg= 3/4.

Figure 3 shows$\ o| ~* obtained by numerical methods for
various values oB. As may be seen, it decays very fast to

b)
2.5 40
2.0 1 307
15 201
10q = @ T 10 4
T T T T T T
B, 25 30 35 40 45
B -20 -10 0 10 20
FIG. 3. Lifetime of the bell-shaped solitary wave for various
values of asymmetry between minima of the on-site potefdied FIG. 4. System dynamicB(= 2.2) after collapse of a bell shape
termined by the parametd). Dashed line shows the asymptotic to the false vacuum statég) system configurationp) energy den-

value of 24/5. sity.
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FIG. 5. System dynamic$3(=2.2) after collapse of a bell shape FIG. 6. System dynamicsB(=2.2) after collapse of a resting

to the false vacuum state with an ir!itially moving bell sha@@.  pell-shape to the true vacuum state) System configuration(b)
System configuratior(b) energy density. energy density.

trix). Thus, only the relatively weakly excited second har-
monic enters into the phonon spectrum and, moreover, it is

located far above its lower edge, i.e., in a region of low |n this section, we will consider the dynamical properties

density of phonon states. For these reasons, radiation &f the discrete version of the systefh). In this case, the
rather weak and the system remains for a relatively long time4amiltonian takes the form

in the oscillating statgFig. 4). This kind of dynamics is
similar to the bubble collapse leading to long-living 1., 1 )
spherically-symmetric ~ “oscillon” states in three- H :; SUn(D)+ 5 alUn (D) = up(O ]+ ULun(O] - (1)
dimensional theorieg35—37. A large bubble may easily be
excited, either by external interaction or by internal dynam-;,4 the equation of motiof8) is now replaced by the system
ics, and the system may pass through the saddle towards the equations
global minimum(see Sec. Il ¢

When the initial system state is a moving bell shape, the
bubble resulting from its collapse moves with the same ve-

locity (Fig. 5 which, in fact, results from the Lorentz invari-  pigcreteness eliminates the translational invariance of the
ance of the problem. After the qulapse towar_dS the g'Qbagystem, leading to serious modification of both stability con-
minimum, the bell-shape state splits into two kinks travelinggiions and system dynamics. There are three essential ef-
towards system end§ig. 6) [38]. In the presence of damp- focts related to discretenesé) the appearance of local

ing, a kink in an asymmetric potential moves with a certainginima of the potential energy corresponding to bell-shape-
constant speel®3]. Since there is no explicit damping in the ;o states for high enough discretene&s) the complex

system, kinks may be expected to accelerate to the speed gfctyre of saddle points of the potential energy replacing

sound ¢ =1). However, some energy loss takes place due tgne transjationally invariant bell-shape solutidiii;) modifi-
radiation(also because of discretization unavoidable in SiMU+4tion of the system dynamics due to the existence of dis-

lation), leading to stationary movement with a speed Verycrete breatherf34] and discreteness effects on the kink dy-
clpse tov=1.1Itis mter_estmg to. note that bo_th kinks move namics, well known from symmetric systerfgj.

with the same speed, irrespective of the original bell-shape
velocity (Fig. 7). This does not violate conservation laws,
since fast kinks have high energy and even very slight and
unnoticeable velocity differences lead to sufficient asymme- In the limit of independent oscillators«(~0) any con-
try in momentum. Moreover, some momentum may be transfiguration with some nodes in the right well and the rest in
ferred to radiation. the left well is stable. In particular, any bell-shape-like con-

Ill. DISCRETENESS EFFECTS

Un— &(Ups1—2Up+Un_q) +U,—BU2+ud=0. (12

A. Local minima

016601-4
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a)
| \
u.ul..( l
b)
50 - FIG. 9. Stable configurations of a discrete sys{sae explana-
. tion in texy. Inset shows the diagram for a wider rangeBof
40 -
The existence and disappearance of the stable configura-
307 tions is related to the restructuring of the phonon modes
=~ ] around them. As we have seen, in the continuum limit there
40 is one growing, imaginary-frequency mode, one zero-
frequency Goldstone mode, and a certain number of periodic
10 (real-frequency localized modes. The behavior of such
0 modes was examined for kinklike equilibria in symmetric
i T * T v T 4 1

40 20 0 20 40 potentials where only the Goldstone mode and periodic
x modes exist. It is known that the former moves up and trans-
forms in a periodic Peierls-Nabarro mode related to oscilla-
tions of the pinned kink around its equilibrium position in
the PN potentia]39]. The higher modes are related to shape-
changing oscillation of the kink. Stabilization of a bell-
figuration, i.e., one with a certain number of consecutiveshaped excitation in a discrete system means that not only
nodes placed exactly in the global minimum, is stable. Ondghe Goldstone mode has become a nonzero real-frequency
may expect that for low values af all these configurations mode, but so has the exploding mode. Due to their topology,
survive in a slightly changed form. They will gradually be- the former now corresponds to the PN mddscillation of
come unstable when the value efis increased. Figure 8 the bell-shaped excitation as a whotend the latter is a kind
shows one of the stable solutions of Efj2). Note that the of a shape mode. The structure of localized modes as a func-
central node lies closer to the global minimum than the cortion of discreteness and asymmetry is shown in the Fig. 10.
responding part of the continuous system. For each value of It must be noted that the stability of a discrete bell-shape-
B one finds the critical value of below which such a one- like configuration has only local character, i.e., it may be
node configuration is stable. Continuing this type of proce-destroyed by large enough perturbations. Moreover, discrete
dure, one can identify the area of stability of the two-nodeconfigurations obviously correspond only to resting bell-
configuration, three-node configuration, etc. The final resulshaped excitations.
is presented in Fig. 9: below th&h consecutive line in the
B-« frame, the correspondingnode configuration is stable. B. Saddle points
Note that for anyn there is an area of parameters where only
the n-node configuration is stable.

FIG. 7. System dynamicB(= 2.2) after collapse of a bell shape
moving with initial velocity v =0.9 to the true vacuum statéa)
System configurationb) energy density.

For many applications it is essential to know the quanti-
tative properties of the potential energy landscape around the
saddle point separating the globally stable state from the

1.2 metastable state. This problem, trivial in the continuum case

1.0 - (a continuous family of saddle-point configurations related

= 08_ by translation becomes much more complicated when dis-
creteness is taken into account.

& 06- First, one needs a procedure for searching for the saddle
0.4 points of the potential energy. It is essential to note that we
0o ] are interested in finding the closest characteristic point

- (VEpo=0) rather than the global minimutwhich is trivial)
0.0 or maximum(which does not exi$t A suitable method con-
6 4 2 02 46 sists in approximating the potential energy function at the

starting point by its second order series expansion and going
FIG. 8. Stable system configuration corresponding to a bellto the saddle point of the obtained function which then be-
shape. comes the starting point for the next iteration.
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a) 1.4+ B =2.265
1.2
1.0 4
0.8
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0.0 —T T T T T T
215 220 225 230 235
B
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b) 1.4+
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FIG. 10. Linear modeflocalized and extende¢@round the one-
node configurationfa) as a function ofB for «=0.1, (b) as a
function of k for B=2.2.

Polental energy
(ard. wrrts)

As a first example, let us take the value Bf2.265,
corresponding to the rightmost peak in Fig. 9. The schematic ’ -r"%%
plot of the potential energy function is shown in Figs(d%+ BRSS
11(c). There are no stable bell-shaped configurations for At
strongly coupled chaing>0.18 and only saddle configura- £, 11. Schematic plot of the potential energy around the bell-
tions are possible. Fox>0.603 there is a series of saddle shaped configurations in the discrete system Ber2.265. The
points corresponding to bell-shaped configurations centereglots refer to two directions, one related to the exploding mode and
on the nodes of the chain. At these saddle points the potentigle other one related to the formerly translational mode.
energy function has exactly one negative curvature and they
will be referred to agproper saddlesSomewhere between considerable compared to the total energy of the saddle-point
any two adjacent proper saddles there is always a charactezenfiguration. For high values af the second lowest curva-
istic point with two negative curvature@ double-saddle ture gradually diminishes for both types of saddle points and
point). It has a higher energy than the proper saddle. Onso does the energy difference between them. In this way, the
may think of it (not strictly) as a transition from one proper translational symmetry of the continuum limit appears.
saddle configuration to the neighboring ofwehich means Below the valuex=~0.18 the one-node configuration be-
shifting the bell shape by one nodalong a ridge; between comes a local minimum and there is a double-saddle point
two saddles there must be a hill. This description obviouslycorresponding to the two-node configuration separating the
refers only to the two selected directions corresponding t@quivalent minima related by shifting the configuration by
the collective coordinates of the system. One of them is thene lattice spacingFig. 11(c)].
size of the bell shape and is related to the exploding mode It is evident from Fig. 9 that below~0.13 many local
and the other one is the position along the system and iminima appear; however, all of them are located far from the
related to the formerly translational mode. All the other “di- “ridge” and their energies are very low. The potential en-
rections” correspond to positive curvatures. ergy landscape for such a discrete system becomes very
As «k decreases, the roles of the proper saddles andomplex and cannot be described in terms of the two-
“pseudohills” (double-saddle configurationsare inter- dimensional space of collective coordinates. Actually, as the
changed ak=0.603 and then again at=0.213—the proper discreteness grows, the system undergoes a transition from
saddles may correspond to configurations centered on or béie collective decay scenario to the individual one.
tween the nodes. The first two plots in Fig. 11 correspond to For a weakly coupled chain a reduced system approxima-
these two different situations. tion is useful 34,40, in which only two nodes are allowed to
The relative difference between energies of these saddimove, while the others are fixed at the local minimum. The
point configurations, normalized to the lower one, are plottecpotential energy of such a system for various valueg @
in the Fig. 1Za). Note that the energy difference may be plotted in the Fig. 13. The figures show also the lowest en-
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FIG. 12. Comparison of energies of different saddle-point con-
figurations,(a) B=2.265. The main plot shows the relative energy
difference, AE=(Ey,—E;)/min(Ey,,E1), between the saddle
point configurations centered on a node and between nodes. The
inset shows the same for a wider rangexof(b) B=2.158. Main
plot, solid line shows the relative energy differencez=(E/,
—E1)/min(Ey,,E,), between the saddle point configurations cen-
tered on a node and between nodes. Main plot, dashed line shows
the relative energy differencE=(E,—E,3)/E,3, between the
saddle point ah=1/3 and the on-node saddle-point configuration.

Inset shows the total, absolute energy of the sagldith respect to
the metastable minimum

ergy paths joining the two deepest minima. For uncoupled

nodes,x=0, [Fig. 13a)] it is clear that the path corresponds

to first shifting one of the particles over the hump and then

doing the same with the other one. As the valuexoin-

creasegFigs. 13b)—13(c)], the nodes move in a more col- )

lective ivag: shigirzg o:raw(e)gmode requires some displacement of FIG. 13. Potential energy of a reduced, two'm.)de .SySte"Bfor
. =2.265anda) k=0, (b) k=0.1,(c) k=0.15. The thick line shows

the other one. Nonetheless, the second node still undergo%se lowest energy paths joining the two local minima

only a slight displacement until the first node is placed in the '

deeper minimum. In the context of the full chain this corre-

_ _ _ For 0.3 k<0.56 the roles of the characteristic points
sponds to the fact that in a strongly discrete chain thewitch[Fig. 14b)]. The on-node configuratiofthree nodes

“cheapest” way is to move the nodes over the hump one byhow corresponds to the proper saddle. Rer0.322 the
one.

proper saddle bifurcates into a double saddle located on a
The second example correspondsBe2.158. For this

node and a proper saddle separating it from the double
value of B various kinds of configurations stabilize almost saddle located in between the nodlE®y. 14(c)]. The proper

simultaneously(see Fig. 9 leading to the appearance of saddles are shifted by approximately 1/3 of the lattice spac-

many local minima ak~0.218. ing from the on-node configuration which means that they
Let us start the discussion close to the continuum limit, agorrespond to asymmetric configurations. Figurébl2om-
previously. Fork>0.56 there is a proper saddle point cen-pares energies of different saddle points.

tered in between the nodes and a double-saddle point cen- The almost simultaneous appearance of many local

tered on a node. The relative difference between the potentiahinima at«x~0.218 causes the potential energy to become
energy at these points is very low: e.g., for 0.7 its value is

very flat at many points. Below this critical value there are
3.2x 10 * of the potential energy barrier heigliig. 14a)].

local minima corresponding to many different kinds of con-
The solution is very similar to the continuum one and thefigurations centered both on a node and between n@les

number of nodes involved in the configuration grows with  of them, the two- and three-node configurations have the
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On the other hand, when the bell-shaped excitation col-
FIG. 14. Schematic plot of the potential energy around the belligpses into an expanding secidubble of globally stable
shaped configurations in the discrete system Be#2.158. The  state, discreteness modifies considerably the kink dynamics.
plots refer to two directions, one related to the exploding mode angy e to radiation [8,39], the kink motion is effectively
the other one related to the formerly translational mode. damped and its speed stabilizes at some Valis(a/fc. An
example is shown in Fig. 15, where the kinks originating

highest energies, i.e., are the closest to the baurrleris from a collapse of a bell-shaped configuration move with a

impossible to present the potential energy of the system in a
coﬁective coorl?jinates diagpram oy y constant velocity ofv~0.75/«. Hence, the effect of dis-

The above examples reveal that the potential structure qreteness on bubble expansion is similar to that of thermal

a discrete chain in a double-well potential strongly depend§I ise[38]. ) S :
on the system parameters. For small discrete(iegher val- Since the bell-shaped configuration is a saddle point of
ues ofk) the most important effect is the overall lowering of the potential energy, the decay of the metastable state must

the saddle compared to the continuum approximafisee be initiated by the formation of a “bubble” larger than the

the inset in Fig. 1¢b)]. But when the nearest-neighbor cou- bell-shaped configuration. From the usual thermodynamical
. ' L . : oint of view, this might occur only in the presence of ther-

pling weakens, the physmal properties of the syst(_am will b(%al fluctuations. Thegtheory beh|r¥d such gecay is now well

Ian‘fedcted by thT growing roughness of the potential energ){mderstoocﬂl 43. However, when the mean energgm-

andscape. Below a certain value fthere is no point in

speaking about bell-shapedollective configurations. In- perature is low, a large enough fluctuation is extremely im-

stead, the system should be described in terms of the indprcigaglihscret tem. even an isolated f
vidual dynamics of the nodes. € system, even an isolated one, processes o

spontaneous energy localization take platé]. Such pro-

. - ) cesses lead to formation of discrete breathers that are very
C. Dynamical effects characteristic of discrete systems long-lived and have relatively larg@lthough limited am-
Discreteness is also important for the system dynamicglitudes and energies. Smalllight” ) breathers may move

after the collapse of the bell-shaped configuration. In view ofalong the system, while larg¢heavy”) ones can only be
the large lifetimes of oscillatory states, for the collapse to-resting[44].

wards the local minimum the difference may be seen only on During collisions, larger breathers tend to grow at the
very large time scales and consists in stopping the decay @xpense of smaller on¢&7], until they reach the maximum
the bubble at a certain stage and converting it into stabl@ossible size. This size is determined by the requirement that
discrete breathers. the second harmonic of the breather frequency lie above the
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IV. CONCLUSIONS

We have studied the properties of nontopological, bell-
shaped excitations in both continuum and discrete systems
with asymmetric on-site potentials. We have shown that such
excitations in the continuum model are unstable. The lifetime
of the bell-shaped waves has been estimated in the two lim-
iting cases: strong asymmetry and weak asymmetry. The
short lifetime of these excitations prevents them from having
any importance for the transport phenomena.

The collapse of a bell-shaped wave may lead either to a
slowly vanishing oscillating bubble excitation around the lo-
cal minimum of the system or to an expanding sector of the
system lying in the global minimum. This sector is bounded
by two kinks moving(in the continuum cagewith the speed
of sound. The analogy with three-dimensional systems dis-
cussed elsewhel[@6—38 seems interesting here.

The bell-shaped configuration of the continuous system is
a saddle point of the potential energy. Actually, due to the
- continuous translational symmetry there is a family of
equivalent saddle points. Through these saddle points the
100 ] decay of the metastable state of the system is most likely to
i happen.

In the discrete system the potential energy around the

0 —— configurations analogous to the continuum bell shapes be-
150 -100  -50 0 50 100 150 comes rough. For systems close to the continuum limit this
n roughness consists simply in replacing the original con-

FIG. 16. An example of dynamical decay of the metastable statém!“'um of equwaler‘l‘t 'sa,ddle p0|nt§ Wlth. isolated S"’Fdd'e

due to two-breather collision. points separate_d by_ hills’{saddle points with two negative
curvatureg This might seem analogous to the Peierls-
Nabarro potential for kinks but unlike the latter, the potential
phonon spectrurf#5,34. If there were breathers close to the energy for bell-shaped waves cannot be rigorously defined
critical size(i.e., such that further increasing the amplitudegnd has not much importance, since such waves are not
would overthrow the system towards the global minimum  stable. For strongly discrete systems, the shape of the poten-
their frequency would be close to 0, contradicting the aboveial energy becomes essentially different: many saddle points
requirement. Hence, the largest breather must have lowemd local minima may appear. These characteristic points
energy than necessary to pass through the saddle. may be numerically searched out and classified but a clear

However, collisions between breathers may lead to thepicture may be obtained only for the most discrete systems
following scenario: a small moving breather collides with awhere the approximation by a reduced system with two de-
large (resting one; the total energy is large enough and thegrees of freedom is applicable. One may conclude that with
system crosses the saddle poior, strictly speaking, it growing di;creteness the system undergoes a crossover from
crosses the potential energy ridge at a certain point, not nedbe collective decay patfmetastable state decay is likely to
essarily at the saddi@nd an expanding critical bubble origi- involve the formation of a bell-shaped saddle-point configu-
nates. An example of such a dynamical decay process f&tion to the single-node patfthe nodes move to the global
shown in Fig. 16. minimum one by one—domino effec4]. _

A criterion for a possibility of a dynamicdhs opposed to Discreteness Ieads_also to r?ew effects during the qolla_lpse
thermodynamicaldecay scenario is roughly as follows: the of a bell-shaped configuration: the dece_ly of the oscillating

. ; bubble may be stopped by forming a discrete breather and
total energy of the largest possible resting breather togeth%e kinks bounding the expanding sector move with lower
with the largest possible moving one should exceed th g P g

. . . elocity.
sac.idlel point heightover the false vacuum configuratjon An interesting generalization of the results presented in
which is equal to the bell-shape energy.

) . this paper would be to include the two-component systems.

At low temperatures this dynamical process may stronglyj; \yas showr{46] that in a two-component model, where the
contribute to the probability of the decay of the metastablesystem(l) is coupled in a special way to another, harmonic
state. However, the statistical properties of breather formag|ein-Gordon field, the equations of motion may be reduced
tion seem to be understood insufficiently to allow any quantp a one-component problem and solvéske also[47)).
titative conclusions. It is important to note that we neglectHowever, it may be showtsee[25]) that such an excitation
any quantum effects that would lead to a completely differ-is unstable, at least for low velocities. This property should
ent decay mechanisrftunneling instead of thermally acti- be contrasted with the stability of excitatiotignk with ac-
vated for low temperature$42]. companying bell shapen symmetric model$1].

i

|
i

il \E| ‘tl
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Another interesting idea was proposed by VolK@0] (limits of integration are shown in Fig.)2
who constructed a model in which the asymmetric on-site Although the integrals appearing in this formula may be
potential is generated dynamically. Such a system supportsalculated explicitly in terms of elliptic functions, it is much
only moving bell-shaped waves. Their stability cannot besimpler, and accurate enough, to calculate the first integral as
rigorously examined due to the lack of Lorentz invariancein a single PT well. Putting.?=0, one has
(cf. [25]). They might be expected to be unstable: except for
the collapse, similar to that described in this paper, Volkov’s Zo d¢ ¢ d¢
solitary wave may be slowed by discreteness, impurities, and f —wf
interaction with the environment and its speed may soon VNPV e 3 ¢
drop below the minimum value necessary for its existence. > cosh “>—1
However, certain similar two-component excitations dis-
cussed in48] proved to be stable or at least very long-living.
This problem is an interesting subject worthy of further
study, both analytical and.numencal. . enough separation of wells, increasiagoy Aa results in
The result_s presented in this paper will be usgful fo_r thqncreasing the integral by/fa. Hence,
correct description of the metastable state decay in a discrete
system. The problem is also of interest within the field of Z
solid state physicf49], where discreteness certainly plays a f VV(0)d{=Sy+2a.
significant role. ~éi

=2,

where (' is a turning point for a symmetric PT potential.
As for the integral in the exponent, note that for a large

Here S, is a constant and may be found numerically to be

Sp=1.8+0.1. The value of; may be found from the condi-
P. Machnikowski was supported by the Polish State Comtion 3u?({;) —2Bu({)+1=0. The inner turning point cor-

mittee for Scientific Research under Grant No. 2 PO3B 083esponds to the solution(¢;)=u, =[B+ B?—3]/3. Thus,

14 and by the Foundation for Polish Science. cosh;=alu, —b. Assuming thatB?=B2+ &2, we havea

~3/8, b~80/8+8/(280), and
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APPENDIX
. . I 1 1 1
Let us reiterate that the analysis of small oscillations Ui==|Bn+/B2—3+ — 24+ —— 2|
around the kink solution in a symmetric poten{iab] leads T 0 2Bg 2BZ-3

to the Schrdinger-type equatioti6) with the Pschl-Teller
potential(10). For an on-site potential close to the symmetric  Inserting B(2)=9/2 and keeping the leading terms we get
one, i.e.B2—Bj<1, the potentiaV({) in Eq.(6) is close to  efi~2 coshi~(62—36)e L. This leads to the split be-
two separated Rehl-Teller wells, each of the forfi0), as  tween the levels and, since the upper ona3s=0, to the
shown in Fig. 2. There is a solution to E@) with A2=0 lowest eigenvalue,

and one solution with a lower eigenvalue that we are going

to find. The lowest eigenlevels may be treated as a Wenzel- 1 7+4\3

Kramers-Brillouin (WKB) pair. Without much inaccuracy K(%:—Ee* 3 &’

one can take the Bohl-Teller level\?=0 as the original

one, instead of the zero-order WKBohr-Sommerfeld re-

sult for one well. The formula for the split between the Ievelsbe

Using the value ofS; estimated above, one gets for the
Il shape’s lifetime

then reads
1| (& d¢ -t e 1o+ 3 1 0.9
2y _ = NIC Ay — ) 2 A ~2 .
A= 2 I KZ—V(g) eXF{ J—Zi MU dg} | 0| 7+4 3\/82_Bge
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